Na/H exchange isoform 1 is involved in mineralocorticoid/salt-induced cardiac injury.
نویسندگان
چکیده
Long-term exposure of uninephrectomized rats to desoxycorticosterone acetate (DOCA)/salt induces cardiac fibrosis and hypertrophy through mineralocorticoid receptors (MRs). However, the underlying cellular mechanisms remain unclear. To determine whether Na/H exchange isoform 1 (NHE1) is involved in the cellular mechanisms, we examined the effects of a specific NHE1 inhibitor, cariporide, and an MR antagonist, spironolactone, on DOCA/salt-induced cardiac fibrosis and hypertrophy. Uninephrectomized rats were given 20 mg of DOCA (single subcutaneous injection) plus 0.9% NaCl/0.3% KCl to drink and were killed at 8 days. Two groups of rats given DOCA/salt were treated with either spironolactone (50 mg/kg per day SC) or cariporide (30 mg/kg per day PO) for 8 days. Control rats were treated with only high salt after the operation. The DOCA/salt-induced perivascular collagen deposition was completely abolished by cariporide and spironolactone. DOCA/salt-induced interstitial collagen deposition was partially and completely suppressed by spironolactone and cariporide, respectively. The rats exposed to DOCA/salt had cardiocyte hypertrophy in the subendocardial and subepicardial regions, a finding that was completely inhibited by cariporide but not by spironolactone. In rats given DOCA/salt, NHE1 protein expression was markedly increased. This was partially and completely reversed by spironolactone and cariporide, respectively. We concluded that cardiac NHE1 contributes to DOCA/salt-induced cardiac fibrosis and hypertrophy and that the NHE1 inhibitor cariporide completely prevents the detrimental effects of DOCA/salt on the heart. We also demonstrated that DOCA/salt-induced cardiac injury through the MRs partly occurs through NHE1 activation.
منابع مشابه
Aldosterone deficiency and mineralocorticoid receptor antagonism prevent angiotensin II-induced cardiac, renal, and vascular injury
Angiotensin II causes cardiovascular injury in part by aldosterone-induced mineralocorticoid receptor activation, and it can also activate the mineralocorticoid receptor in the absence of aldosterone in vitro. Here we tested whether endogenous aldosterone contributes to angiotensin II/salt-induced cardiac, vascular, and renal injury by the mineralocorticoid receptor. Aldosterone synthase knocko...
متن کاملSalt excess causes left ventricular diastolic dysfunction in rats with metabolic disorder.
Metabolic syndrome is a highly predisposing condition for cardiovascular disease and could be a cause of excess salt-induced organ damage. Recently, several investigators have demonstrated that salt loading causes left ventricular diastolic dysfunction associated with increased oxidative stress and mineralocorticoid receptor activation. We, therefore, investigated whether excess salt induces ca...
متن کاملHyperaldosteronemia in rabbits inhibits the cardiac sarcolemmal Na(+)-K(+) pump.
Aldosterone upregulates the Na(+)-K(+) pump in kidney and colon, classical target organs for the hormone. An effect on pump function in the heart is not firmly established. Because the myocardium contains mineralocorticoid receptors, we examined whether aldosterone has an effect on Na(+)-K(+) pump function in cardiac myocytes. Myocytes were isolated from rabbits given aldosterone via osmotic mi...
متن کاملDeoxycorticosterone Acetate/Salt-Induced Cardiac But Not Renal Injury Is Mediated By Endothelial Mineralocorticoid Receptors Independently From Blood Pressure.
Chronic kidney disease has a tremendously increasing prevalence and requires novel therapeutic approaches. Mineralocorticoid receptor (MR) antagonists have proven highly beneficial in the therapy of cardiac disease. The cellular and molecular events leading to cardiac inflammation and remodeling are proposed to be similar to those mediating renal injury. Thus, this study was designed to evaluat...
متن کاملAltered cardiac Na(+)/H(+) exchange in phospholipase D-treated sarcolemmal vesicles.
Cardiac sarcolemmal Na(+)/H(+) exchange is critical for the regulation of intracellular pH, and its activity contributes to ischemia-reperfusion injury. It has been suggested that the membrane phospholipid environment does not modulate Na(+)/H(+) exchange. The present study was carried out to determine the effects on Na(+)/H(+) exchange of modifying the endogenous membrane phospholipids through...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Hypertension
دوره 41 3 شماره
صفحات -
تاریخ انتشار 2003